Euclid: Photometric redshift calibration with the clustering redshifts technique
Euclid: Photometric redshift calibration with the clustering redshifts technique
W. d'Assignies Doumerg, M. Manera, C. Padilla, O. Ilbert, H. Hildebrandt, L. Reynolds, J. Chaves-Montero, A. H. Wright, P. Tallada-Crespí, M. Eriksen, J. Carretero, W. Roster, Y. Kang, K. Naidoo, R. Miquel, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, D. Bagot, M. Baldi, A. Balestra, S. Bardelli, P. Battaglia, A. Biviano, E. Branchini, M. Brescia, S. Camera, V. Capobianco, C. Carbone, V. F. Cardone, S. Casas, F. J. Castander, M. Castellano, G. Castignani, S. Cavuoti, K. C. Chambers, A. Cimatti, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, F. Courbin, H. M. Courtois, M. Crocce, A. Da Silva, H. Degaudenzi, S. de la Torre, G. De Lucia, M. Douspis, X. Dupac, A. Ealet, S. Escoffier, M. Farina, F. Faustini, S. Ferriol, F. Finelli, P. Fosalba, S. Fotopoulou, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, K. George, B. Gillis, C. Giocoli, P. Gómez-Alvarez, J. Gracia-Carpio, A. Grazian, F. Grupp, W. Holmes, I. M. Hook, A. Hornstrup, K. Jahnke, M. Jhabvala, B. Joachimi, E. Keihänen, S. Kermiche, A. Kiessling, B. Kubik, M. Kümmel, M. Kunz, H. Kurki-Suonio, O. Lahav, A. M. C. Le Brun, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, G. Mainetti, D. Maino, E. Maiorano, O. Mansutti, S. Marcin, O. Marggraf, K. Markovic, M. Martinelli, N. Martinet, F. Marulli, R. Massey, D. C. Masters, E. Medinaceli, S. Mei, M. Melchior, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, A. Mora, M. Moresco, L. Moscardini, C. Neissner, S. -M. Niemi, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, Z. Sakr, D. Sapone, B. Sartoris, J. A. Schewtschenko, P. Schneider, T. Schrabback, A. Secroun, E. Sefusatti, G. Seidel, M. Seiffert, S. Serrano, P. Simon, C. Sirignano, G. Sirri, A. Spurio Mancini, L. Stanco, J. Steinwagner, D. Tavagnacco, A. N. Taylor, H. I. Teplitz, I. Tereno, N. Tessore, S. Toft, R. Toledo-Moreo, F. Torradeflot, A. Tsyganov, I. Tutusaus, L. Valenziano, J. Valiviita, T. Vassallo, G. Verdoes Kleijn, Y. Wang, J. Weller, G. Zamorani, E. Zucca, M. Bolzonella, C. Burigana, L. Gabarra, J. Martín-Fleitas, I. Risso, V. Scottez, M. Viel
AbstractAims: The precision of cosmological constraints from imaging surveys hinges on accurately estimating the redshift distribution $ n(z) $ of tomographic bins, especially their mean redshifts. We assess the effectiveness of the clustering redshifts technique in constraining Euclid tomographic redshift bins to meet the target uncertainty of $ \sigma ( \langle z \rangle ) < 0.002 (1 + z) $. In this work, these mean redshifts are inferred from the small-scale angular clustering of Euclid galaxies, which are distributed into bins with spectroscopic samples localised in narrow redshift slices. Methods: We generate spectroscopic mocks from the Flagship2 simulation for the Baryon Oscillation Spectroscopic Survey (BOSS), the Dark Energy Spectroscopic Instrument (DESI), and Euclid's Near-Infrared Spectrometer and Photometer (NISP) spectroscopic survey. We evaluate and optimise the clustering redshifts pipeline, introducing a new method for measuring photometric galaxy bias (clustering), which is the primary limitation of this technique. Results: We have successfully constrained the means and standard deviations of the redshift distributions for all of the tomographic bins (with a maximum photometric redshift of 1.6), achieving precision beyond the required thresholds. We have identified the main sources of bias, particularly the impact of the 1-halo galaxy distribution, which imposed a minimal separation scale of 1.5 Mpc for evaluating cross-correlations. These results demonstrate the potential of clustering redshifts to meet the precision requirements for Euclid, and we highlight several avenues for future improvements.