Stochastic Quantum Spiking Neural Networks with Quantum Memory and Local Learning

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Stochastic Quantum Spiking Neural Networks with Quantum Memory and Local Learning

Authors

Jiechen Chen, Bipin Rajendran, Osvaldo Simeone

Abstract

Neuromorphic and quantum computing have recently emerged as promising paradigms for advancing artificial intelligence, each offering complementary strengths. Neuromorphic systems built on spiking neurons excel at processing time-series data efficiently through sparse, event-driven computation, consuming energy only upon input events. Quantum computing, on the other hand, leverages superposition and entanglement to explore feature spaces that are exponentially large in the number of qubits. Hybrid approaches combining these paradigms have begun to show potential, but existing quantum spiking models have important limitations. Notably, prior quantum spiking neuron implementations rely on classical memory mechanisms on single qubits, requiring repeated measurements to estimate firing probabilities, and they use conventional backpropagation on classical simulators for training. Here we propose a stochastic quantum spiking (SQS) neuron model that addresses these challenges. The SQS neuron uses multi-qubit quantum circuits to realize a spiking unit with internal quantum memory, enabling event-driven probabilistic spike generation in a single shot. Furthermore, we outline how networks of SQS neurons -- dubbed SQS neural networks (SQSNNs) -- can be trained via a hardware-friendly local learning rule, eliminating the need for global classical backpropagation. The proposed SQSNN model fuses the time-series efficiency of neuromorphic computing with the exponentially large inner state space of quantum computing, paving the way for quantum spiking neural networks that are modular, scalable, and trainable on quantum hardware.

Follow Us on

0 comments

Add comment