Observability of Acausal and Uncorrelated Optical-Quasar Pairs for Quantum-Mechanical Experiments


Observability of Acausal and Uncorrelated Optical-Quasar Pairs for Quantum-Mechanical Experiments
Eric Steinbring
AbstractViewing high-redshift sources at near-opposite directions on the sky can assure, by light-travel-time arguments, acausality between their emitted photons. One utility would be true random-number generation, by sensing these via two independent telescopes that each flip a switch based on those latest-arrived colours; for example, to autonomously control a quantum-mechanical (QM) experiment. Although demonstrated with distant quasars, those were not fully acausal pairs, which are restricted in simultaneous view from the ground at any single observatory. In optical light such faint sources also require large telescope aperture to avoid sampling assumptions when imaged at fast camera framerates: either unsensed intrinsic correlations between them or equivalently-correlated noise may ruin the expectation of pure randomness. One such case which could spoil a QM test is considered. Based on that, allowed geometries and instrumental limits are modelled for any two ground-based sites, and their data simulated. To compare, an analysis of photometry from the Gemini twin 8-m telescopes is presented, using archival data of well-separated bright stars, obtained with the instruments 'Alopeke (on Gemini-North in Hawai'i) and Zorro (on Gemini-South in Chile) simultaneously in two bands (centred at 562 nm and 832 nm) with 17 Hz framerate. No flux correlation is found, calibrating an analytic model, predicting where a search at signal-to-noise over 50 at 50 Hz with the same instrumentation can be made. Finally, the software PDQ (Predict Different Quasars) is presented which searches a large catalogue of known quasars, reporting those with brightness and visibility suitable to verify acausal, uncorrelated photons at those limits.