S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

Authors

Muzhi Dai, Chenxu Yang, Qingyi Si

Abstract

As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking problem stems from conventional outcome-reward reinforcement learning's systematic neglect in regulating intermediate reasoning steps. This paper proposes Serial-Group Decaying-Reward Policy Optimization (namely S-GRPO), a novel reinforcement learning method that empowers models with the capability to determine the sufficiency of reasoning steps, subsequently triggering early exit of CoT generation. Specifically, unlike GRPO, which samples multiple possible completions (parallel group) in parallel, we select multiple temporal positions in the generation of one CoT to allow the model to exit thinking and instead generate answers (serial group), respectively. For the correct answers in a serial group, we assign rewards that decay according to positions, with lower rewards towards the later ones, thereby reinforcing the model's behavior to generate higher-quality answers at earlier phases with earlier exits of thinking. Empirical evaluations demonstrate compatibility with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill models, achieving 35.4% ~ 61.1\% sequence length reduction with 0.72% ~ 6.08% accuracy improvements across GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond benchmarks.

Follow Us on

0 comments

Add comment