Provable Reinforcement Learning from Human Feedback with an Unknown Link Function

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Provable Reinforcement Learning from Human Feedback with an Unknown Link Function

Authors

Qining Zhang, Lei Ying

Abstract

Link functions, which characterize how human preferences are generated from the value function of an RL problem, are a crucial component in designing RLHF algorithms. Almost all RLHF algorithms, including state-of-the-art ones in empirical studies such as DPO and PPO, assume the link function is known to the agent (e.g., a logistic function according to the Bradley-Terry model), which is arguably unrealistic considering the complex nature of human preferences. To avoid link function mis-specification, this paper studies general RLHF problems with unknown link functions. We propose a novel policy optimization algorithm called ZSPO based on a new zeroth-order policy optimization method, where the key is to use human preference to construct a parameter update direction that is positively correlated with the true policy gradient direction. ZSPO achieves it by estimating the sign of the value function difference instead of estimating the gradient from the value function difference, so it does not require knowing the link function. Under mild conditions, ZSPO converges to a stationary policy with a polynomial convergence rate depending on the number of policy iterations and trajectories per iteration. Numerical results also show the superiority of ZSPO under link function mismatch.

Follow Us on

0 comments

Add comment